Data Sheet

FC301 USB-HEAR Module USB High-end Audio Receiver Version 1.0.0

> February 10, 2022 Build 2 ©FibreCode GmbH

Contents

1	Ove	erview	2
	1.1	Block diagram	2
	1.2	Key Features	2
	1.3	Additional Features	3
	1.4	Supported Operating Systems	3
2	Mo	dule Pins	4
	2.1	Supply and Reset Pins	5
	2.2	USB Pins	5
	2.3	Clock Pins	5
	2.4	DAC Output Pins	6
	2.5	SPDIF Pins	6
	2.6	I2S Input Pins	6
	2.7	I2C Slave Pins	6
	2.8		7
	2.9		7
	2.10		7
			7
3	Pow	ver Supply	8
4	DA	C Output	9
	4.1	-	9
	4.2	DSD Mode	9
5	I2C	Register Access	0
_	5.1	I2C Device Address	
	5.2	Register Address and Size	
	5.3	I2C Transactions	
	5.4	Register Write Transaction	
	5.5	Register Read Transaction	
6	Con	ntrol and Status Registers 12	2
-			2
7		ctrical Characteristics 13	
	7.1	DC Supply Characteristics	
	7.2	Digital Pin Characteristics	3
8	Phy	vsical Dimensions 14	4
9	Deb	oug-Tools 14	4
	9.1	UART-Interface (CN2)	4

1 Overview

The FC301 USB-HEAR Module is a microcontroller-based USB audio receiver solution for HiFi DAC and amplifier applications. It is implemented as a system on module (SoM) which enables easy and rapid integration.

The FC301 USB-HEAR Module implements a USB audio class 2.0 compliant PCM and DSD playback interface compatible with Windows 11/10, macOS and Linux hosts. For Windows, a bit-perfect, high-res audio driver is available.

For proper integration with a DAC, the module supports an external master clock input. The receiver can be also controlled and monitored through an I2C register interface and a set of control and status lines.

1.1 Block diagram

Figure 1: Block diagram FC301 USB-HEAR Module

1.2 Key Features

USB Audio:

- USB audio class 2.0 compliant isochronous streaming, two audio channels (stereo)
- Asynchronous clocking model, USB playback stream is synchronized to master oscillator

- 32-bit PCM sample format up to 768 kHz sampling rate
- Native DSD up to DSD1024, compatible with Windows driver and Linux
- DSD over PCM (DoP) up to DSD256

DAC Output:

- I2S compliant digital interface for connecting a digital-to-analog converter
- 32-bit PCM format up to 768 kHz sampling rate
- DSD format up to DSD1024

SPDIF Output:

• 24-bit PCM format up to 192 kHz sampling rate

Digital Input:

- I2S compliant digital interface for connecting external digital sources such as a streaming client or tuner
- 32-bit PCM format up to 192 kHz sampling rate

Control Interface:

- Control and status register set accessible via I2C
- Interrupt status line for notifications on status register changes
- Status lines for master clock selection, PCM/DSD format selection and DAC mute

Optional UART Debug Interface:

• For debugging/trace purpose, FC301 USB-HEAR Module has 3-pin Dbg-Interface (CN2) which can be assembled with 3-pin Mini-Pitch connector. (Is already assembled using FC920 USB-HEAR DevKit)

1.3 Additional Features

USB HID Consumer Control:

- Multimedia key events can be sent to the host to control a player application
- For example: Volume Up, Volume Down, Play, Pause, Fast Forward, Fast Backward etc.

Firmware Update:

- Firmware update via USB supported on Windows, macOS, and Linux
- Firmware update via I2C from main controller

1.4 Supported Operating Systems

USB-HEAR works with built-in drivers on Windows 11, Windows 10, macOS and Linux. To enable the full feature set, specifically native DSD playback, a custom driver is available for Windows 11/10.

2 Module Pins

Figure 2: USB-HEAR Module Pinout

NOTE: All digital I/O pins use 3.3V logic.

2.1 Supply and Reset Pins

Pin	Name	Description
1, 4, 9, 15, 16,	GND	System ground.
19, 24, 30, 31,		
45, 48, 50, 54,		
58		
49	5V_IN	5V supply input to internal DC/DC regulator.
46	3V3_OUT	3.3V output of internal DC/DC regulator.
47	3V3_IN	3.3V supply input.
		To use a 5V supply and the internal DC/DC reg-
		ulator, connect this pin to 3V3_OUT. Alternatively
		connect it to an external 3.3V supply.
55	SYS_RESETn	Reset input, active LOW.

2.2 USB Pins

Pin	Name	Description
51	USB1_VBUS	USB VBUS sensing.
		To be connected to VBUS provided by the host.
52	USB1_D_N	USB 2.0 high speed D- data line.
53	USB1_D_P	USB 2.0 high speed D+ data line.

2.3 Clock Pins

Pin	Name	Description
59	MCLK_IN	Master clock input.
60	MCLK_IN_N	Master clock input for differential clock signal. Re-
		served for future use.
38	GPIO7/MCLK_SELECT	Output that indicates which clock is to be provided
		to MCLK_IN.
		LOW: $MCLK_IN = 44100 \text{ Hz} * 1024 = 45.1584 \text{ MHz}$
		$ $ HIGH: MCLK_IN = 48000 Hz * 1024 = 49.152 MHz

2.4 DAC Output Pins

Pin	Name	Description
25	SAI1_SYNC	I2S L/R clock output.
26	SAI1_BCLK	I2S bit clock output.
27	SAI1_TX_DATA0	I2S data output.
28	SAI1_TX_DATA1	R channel output in DSD mode.
29	SAI1_RX_DATA0	I2S data input. Reserved for future use.
40	GPIO9/DSD_MODE	Output that indicates in which mode SAI1 is cur-
		rently operating.
		LOW:
		PCM mode, SAI1_TX_SYNC, SAI1_TX_BCLK and
		SAI1_TX_DATA0 active.
		HIGH:
		DSD mode, SAI1_TX_BCLK, SAI1_TX_DATA0 and
		SAI1_TX_DATA1 active.
39	GPIO8/MUTE	Output that indicates whether or not SAI1 signals
		are valid and stable.
		LOW:
		SAI1 and DSD_MODE outputs stable.
		HIGH:
		SAI1 and DSD_MODE outputs not stable because a
		clock or mode switch is in progress.

2.5 SPDIF Pins

Pin	Name	Description
2	SPDIF_OUT	SPDIF output.
3	SPDIF_IN	SPDIF input. Reserved for future use.

2.6 I2S Input Pins

Pin	Name	Description
20	SAI2_SYNC	I2S L/R clock input.
21	SAI2_BCLK	I2S bit clock input.
23	SAI2_RX_DATA	I2S data input.
22	SAI2_TX_DATA	I2S data output. Unused.

2.7 I2C Slave Pins

Pin	Name	Description
56	SLAVE_I2C_SCL	Slave I2C bus for internal register access.
57	SLAVE_I2C_SDA	
42	GPIO11/INTn	Interrupt output. LOW active, open drain.

2.8 I2C Master Pins

Pin	Name	Description
18	MASTER_I2C_SCL	I2C bus for external CODEC control.
17	MASTER_I2C_SDA	
6	ID_I2C_SCL	I2C bus for ID PROM access.
5	ID_I2C_SDA	

2.9 UART Pins

Pin	Name	Description
7	UART_RXD	Optional Debug interface.
8	UART_TXD	

2.10 SPI Pins

Pin	Name	Description
10	SPI_DIN	Reserved for future use.
11	SPI_DOUT	
12	SPLSCK	
13	SPI_CS0n	
14	SPI_CS1n	

2.11 GPIO Pins

Pin	Name	Description
32	GPIO1	Reserved for future use.
33	GPIO2	
34	GPIO3	
35	GPIO4	
36	GPIO5	
37	GPIO6	
41	GPIO10	
43	GPIO12	
44	GPIO13	

3 Power Supply

The USB-HEAR module requires a 3.3V power supply for its internal components. Power has to be provided through the 3V3_IN pin as shown in Figure 3 below.

Figure 3: Application with external 3.3V supply, internal regulator unused

If there is a 5V supply available only in the given application then the module's internal regulator can be used to generate the required 3.3V supply. This requires an external connection from 3V3_OUT to 3V3_IN as shown in Figure 4 below.

Figure 4: Application with external 5V power supply and internal voltage regulator

4 DAC Output

The DAC output supports two modes, PCM and DSD.

4.1 PCM Mode

In PCM mode an I2S compatible protocol is used. A single data line carries left and right channels interleaved. The most significant bit of each sample word is transmitted first.

Figure 5: I2S compatible protocol in PCM mode

4.2 DSD Mode

DSD mode uses two data lines to carry left and right channel bit streams.

Figure 6: Two data lines and bit clock in DSD mode

5 I2C Register Access

The USB-HEAR module implements a set of control and status registers which are accessible via I2C. This enables runtime control and monitoring of the module's operation for an application processor.

5.1 I2C Device Address

The 7-bit I2C slave address is 0x59. The layout of the slave address byte is as follows:

Bit:	7	6	5	4	3	2	1	0
Value:	1	0	1	1	0	0	1	R/W

5.2 Register Address and Size

Each register has a unique address in the range 0..255. The register address is 8 bits (one byte) in size. Register size varies. There are 1-byte, 2-byte and 4-byte registers. For multi-byte registers, bytes are transferred in little-endian byte order: least significant byte first.

5.3 I2C Transactions

Details on supported transactions are depicted below. Symbols used in the description are defined as follows.

5.4 Register Write Transaction

To write a register, a master initiates a single I2C transaction which has the following layout.

Figure 7: Register write access

The number of data bytes transferred in a write transaction must correspond exactly to the size of the addressed register. A partial register write is not supported.

5.5 Register Read Transaction

To read from a register, a write transaction followed by a read transaction can be used as shown below.

Figure 8: Register read access using two separate transactions

Alternatively, a combined I2C transaction can be used by concatenating a write and a read transaction with a repeated start condition. This is shown below.

Figure 9: Register read access using a repeated start condition

A partial register read operation is supported, i.e. the number of data bytes requested by the master in a read operation can be less than the size of the addressed register.

6 Control and Status Registers

Address	Register	Size (bytes)	Access	Description		
0x00	INTERFACE_VERSION	2	RO	Version of the register layout.		
0x01	FIRMWARE_VERSION	2	RO	Current firmware version.		
0x04	MAGIC_PATTERN	4	RO	Contains the constant value 0xB3B2B1B0. Useful for testing register access, byte order, etc.		
0x05	SCRATCH	4	RW	An arbitrary value can be written and then read back. Useful for testing register access.		
0x08	LAST_WR_STATUS	4	RO	Completion status of the last register write transaction.		
0x09	LAST_RD_STATUS	4	RO	Completion status of the last register read transaction.		
0x10	INT_STATUS	2	RW	Interrupt status bits. A one must be written to clear a status bit.		
0x11	INT_STATUS_AC	2	RO	Same as INT_STATUS but with autoclear as a side effect on read access.		
0x12	INT_ENABLE	2	RW	Interrupt enable bit mask.		
0x21	DACOUT_CTRL	1	RW	Control bits for the DAC output.		
0x22	DACOUT_STATUS	2	RO	Bits that reflect the current operating mode and status of the DAC output.		
0x28	INPUT_SEL	1	RW	Switches between USB and I2S input stream.		
0x30	USB_CTRL	1	RW	Control bits for the USB device.		
0x31	USB_STATUS	1	RO	Bits that reflect the current status of the USB device.		
0x32	USBAUD_STATUS	2	RO	Bits that reflect the current operating mode and status of the USB audio device.		
0x40	DIGI_IN_CTRL	1	RW	Control bits for the I2S input.		
0x41	DIGI_IN_STATUS	2	RO	Bits that reflect the current status of the I2S input.		
0x70	HIDCC_EVENT	2	WO	A write to this register posts a HID Consumer Control event that will be forwarded to the host.		
0x71	HIDCC_KEY	2	WO	A write to this register posts a HID Consumer Control "key pressed" plus "key released" event.		

Detailed register reference documentation is available separately.

7 Electrical Characteristics

7.1 DC Supply Characteristics

Description	Symbol	Min	Typ	Max	Units
5 V power supply to internal regulator	5V_IN	tbd.	5	tbd.	V
3.3 V output from internal regulator	3V3_OUT	tbd.	3.3	tbd.	V
3.3 V power supply to internal components	3V3_IN	tbd.	3.3	tbd.	V
5 V power supply current	$I_{5V_{IN}}$	_	tbd.	tbd.	mA
3.3 V sink current (internal regulator)	I_{3V3_OUT}	_	tbd.	tbd.	mA
3.3 V power supply current	I_{3V3_IN}	_	tbd.	tbd.	mA

7.2 Digital Pin Characteristics

Description	Symbol	Min	Typ	Max	Units
HIGH input voltage	V_{IH}	tbd.	_	tbd.	V
LOW input voltage	V_{IL}	tbd.	_	tbd.	V
HIGH output voltage	V_{OH}	tbd.	_	tbd.	V
LOW output voltage	V_{OL}	tbd.	_	tbd.	V
HIGH output current	I_{OH}	_	_	tbd.	mA
LOW output sink current	I_{OL}	_	_	tbd.	mA

8 Physical Dimensions

Figure 10: FC301 USB-HEAR Module top view

9 Debug-Tools

9.1 UART-Interface (CN2)

For debugging/trace purpose, FC301 USB-HEAR Module has 3-pin Dbg-Interface (CN2) which can be assembled with 3-pin Mini-Pitch connector. (Is already assembled using FC920 USB-HEAR DevKit)

Figure 11: UART Connector on FC920 USB-HEAR DevKit

Signal	Color	FibreCode Board Pin
TXD (output)	Orange	RX
GND (ground)	Black	GND
RXD (input)	Yellow	TX

UART settings: 921600 baud, 8 data bits, no parity, 1 stop bit (8N1).